Natural Tocotrienols

G. Neuro Protection

  • 1. Tocotrienol: the natural vitamin E to defend the nervous system?

    Sen, C.K. et al. (2004), “The natural vitamin E to defend the nervous system?”. Ann N.Y. Acad. Sci 1031 : 127-142.

    Vitamin E is essential for normal neurological function. It is the major lipid-soluble, chain-breaking antioxidant in the body, protecting the integrity of membranes by inhibiting lipid peroxidation. Mostly on the basis of symptoms of primary vitamin E deficiency, it has been demonstrated that vitamin E has a central role in maintaining neurological structure and function. Orally supplemented vitamin E reaches the cerebrospinal fluid and brain. Vitamin E is a generic term for all tocopherols and their derivatives having the biological activity of RRR-alpha-tocopherol, the naturally occurring stereoisomer compounds with vitamin E activity. In nature, eight substances have been found to have vitamin E activity: alpha-, beta-, gamma- and delta-tocopherol; and alpha-, beta-, gamma- and delta-tocotrienol. Often, the term vitamin E is synonymously used with alpha-tocopherol. Tocotrienols, formerly known as zeta, , or eta-tocopherols, are similar to tocopherols except that they have an isoprenoid tail with three unsaturation points instead of a saturated phytyl tail. Although tocopherols are predominantly found in corn, soybean, and olive oils, tocotrienols are particularly rich in palm, rice bran, and barley oils. Tocotrienols possess powerful antioxidant, anticancer, and cholesterol-lowering properties. Recently, we have observed that alpha-tocotrienol is multi-fold more potent than alpha-tocopherol in protecting HT4 and primary neuronal cells against toxicity induced by glutamate as well as by a number of other toxins. At nanomolar concentration, tocotrienol, but not tocopherol, completely protected neurons by an antioxidant-independent mechanism. Our current work identifies two major targets of tocotrienol in the neuron: c-Src kinase and 12-lipoxygenase. Dietary supplementation studies have established that tocotrienol, fed orally, does reach the brain. The current findings point towards tocotrienol as a potent neuroprotective form of natural vitamin E.

  • 2. Palm oil–derived natural Vitamin E α-Tocotrienol in brain health and disease

    Chandan, K. S. et al. (2010). Palm oil–derived natural Vitamin E α-Tocotrienol in brain health and disease. Journal of Americen College Nutritionn. 29(3): 314S-323S

    A growing body of research supports that members of the vitamin E family are not redundant with respect to their biological function. Palm oil derived from Elaeis guineensis represents the richest source of the lesser characterized vitamin E, α-tocotrienol. One of 8 naturally occurring and chemically distinct vitamin E analogs, α-tocotrienol possesses unique biological activity that is independent of its potent antioxidant capacity. Current developments in α-tocotrienol research demonstrate neuroprotective properties for the lipid-soluble vitamin in brain tissue rich in polyunsaturated fatty acids (PUFAs). Arachidonic acid (AA), one of the most abundant PUFAs of the central nervous system, is highly susceptible to oxidative metabolism under pathologic conditions. Cleaved from the membrane phospholipid bilayer by cytosolic phospholipase A2, AA is metabolized by both enzymatic and nonenzymatic pathways. A number of neurodegenerative conditions in the human brain are associated with disturbed PUFA metabolism of AA, including acute ischemic stroke. Palm oil–derived α-tocotrienol at nanomolar concentrations has been shown to attenuate both enzymatic and nonenzymatic mediators of AA metabolism and neurodegeneration. On a concentration basis, this represents the most potent of all biological functions exhibited by any natural vitamin E molecule. Despite such therapeutic potential, the scientific literature on tocotrienols accounts for roughly 1% of the total literature on vitamin E, thus warranting further investment and investigation.

  • 3. Clinical Investigation of the Protective Effects of Palm Vitamin E Tocotrienols on Brain White Matter

    Gopalan. et al. (2014). "Clinical Investigation of the Protective Effects of Palm Vitamin E Tocotrienols on Brain White Matter". American Heart Association. 45: 1422-1428.

    Previous cell-based and animal studies showed mixed tocotrienols are neuroprotective, but the effect is yet to be proven in humans. Thus, the present study aimed to evaluate the protective activity of mixed tocotrienols in humans with white matter lesions (WMLs). WMLs are regarded as manifestations of cerebral small vessel disease, reflecting varying degrees of neurodegeneration and tissue damage with potential as a surrogate end point in clinical trials. A total of 121 volunteers aged ≥35 years with cardiovascular risk factors and MRI-confirmed WMLs were randomized to receive 200 mg mixed tocotrienols or placebo twice a day for 2 years. The WML volumes were measured from MRI images taken at baseline, 1 year, and 2 years using a validated software and were compared. Fasting blood samples were collected for full blood chemistry investigation. According to per-protocol (88 volunteers) and intention-to-treat (121 volunteers) analyses, the mean WML volume of the placebo group increased after 2 years, whereas that of the tocotrienol-supplemented group remained essentially unchanged. The mean WML volume change between the 2 groups was not significantly different (P=0.150) at the end of 1 year but was significant at the end of 2 years for both per-protocol and intention-to-treat analyses (P=0.019 andP=0.018). No significant difference was observed in the blood chemistry parameters between the 2 groups. Mixed tocotrienols were found to attenuate the progression of WMLs.