Red Palm Fruit Oil

F. Ischaemia-reperfusion injury

  • 1. Dietary red palm oil reduces ischaemia-reperfusion injury in rats fed a hypercholesterolaemic diet.

    Kruger, M. J. et al. (2007). Dietary red palm oil reduces ischaemia-reperfusion injury in rats fed a hypercholesterolaemic diet. Britian Journal of Nutrition. 97(4):653-60.

    We have previously shown that dietary red palm oil (RPO) supplementation improves functional recovery in hearts subjected to ischaemia-reperfusion. However, little knowledge exists concerning the effects of RPO supplementation of a high-cholesterol diet on ischaemia-reperfusion injury. The signalling mechanisms responsible for RPO's effects in the presence of cholesterol also remain to be elucidated. Therefore, the aim of the present study was to examine the effects of RPO, given with a high-cholesterol diet, on mitogen-activated protein kinase (MAPK) phosphorylation and apoptosis. Long-Evans rats were fed a control diet, a control diet containing 2% cholesterol, or a control diet containing 2% cholesterol and 7 g RPO per kg (CRPO) for 5 weeks. Hearts were excised and mounted on an isolated working heart perfusion apparatus. Cardiac function was measured after which hearts were freeze-clamped and used to assess MAPK phosphorylation and to evaluate apoptosis. Cholesterol supplementation caused a poor aortic output (AO) recovery compared with the control group (35.5 (sem 6.2) v. 55.4 (sem 2.5) %), but when RPO was added, the percentage AO increased significantly. The cholesterol group's poor AO was associated with a significant increase in p38-MAPK phosphorylation, whereas the CRPO-supplemented group showed as significant reduction in p38-MAPK phosphorylation when compared with the cholesterol-supplemented group. This significant reduction in p38-MAPK was also associated with reduced apoptosis as indicated by significant reductions in caspase-3 and poly(ADP-ribose) polymerase cleavage.

  • 2. p38-MAPK and PKB/Akt, possible role players in red palm oil-induced protection of the isolated perfused rat heart?

    Engelbrecht, A. M. et al. (2006). p38-MAPK and PKB/Akt, possible role players in red palm oil-induced protection of the isolated perfused rat heart? Journal of Nutritional Biochemistry. 17(4):265-71.

    It has been shown that dietary red palm oil (RPO) supplementation improves reperfusion function. However, no exact protective cellular mechanisms have been established. To determine a potential mechanism for functional improvement, we examined the regulation of both mitogen-activated protein kinases (MAPKs) and PKB/Akt in the presence and absence of dietary RPO supplementation in ischemia/reperfusion-induced injury. Wistar rats were fed a control diet or control diet plus 7 g RPO/kg diet for 6 weeks. Hearts were excised and mounted on an isolated working heart perfusion apparatus. Cardiac function was measured before and after hearts were subjected to 25 min of total global ischemia. Hearts subjected to the same conditions were freeze clamped and used to characterize the degree of phosphorylation of extracellular signal-regulated kinase, p38, c-Jun NH(2)-terminal protein kinase (JNK) and PKB/Akt. Dietary RPO supplementation significantly improved aortic output recovery (72.1 +/- 3.2% vs. 54.0 +/- 3.2%, P < .05). This improved aortic output recovery was associated with significant increases in p38 and PKB/Akt phosphorylation during reperfusion when compared with control hearts. Furthermore, a significant decrease in JNK phosphorylation and attenuation of poly(ADP-ribose) polymerase cleavage occurred in the RPO-supplemented group during reperfusion. Our results suggest that dietary RPO supplementation caused differential phosphorylation of the MAPKs and PKB/Akt during ischemia/reperfusion-induced injury. These changes in phosphorylation were associated with improved functional recovery and reduced cleavage of an apoptotic marker, arguing that dietary RPO supplementation may confer protection via the MAPK and PKB/Akt signaling pathways during ischemia/reperfusion-induced injury.

  • 3. Dietary red palm oil improves reperfusion cardiac function in the isolated perfused rat heart of animals fed a high cholesterol diet.

    Esterhuyse, A. J. et al. (2005). Dietary red palm oil improves reperfusion cardiac function in the isolated perfused rat heart of animals fed a high cholesterol diet. Prostaglandins Leukotrienes and Essential Fatty Acids. 72(3):153-61.

    It has been shown that dietary red palm oil (RPO) supplementation improved reperfusion function. However, no exact protective cellular mechanisms have been established. Our aim was to search for a possible cellular mechanism and a role for fatty acids. Rats were fed a standard rat chow, plus cholesterol and/or RPO-supplementation for 6 weeks. Functional recovery, myocardial phospholipid and cAMP/cGMP levels were determined in isolated rat hearts subjected to 25 min of normothermic total global ischaemia. Dietary RPO in the presence of cholesterol improved aortic output (AO) recovery (63.2+/-3.06%, P<0.05) vs. cholesterol only (36.5+/-6.2%). The improved functional recovery in hearts supplemented with RPO vs. control was preceded by an elevation in the cGMP levels early in ischaemia (RPO 132.9+/-36.3% vs. control 42.7+/-24.4%, P<0.05). Concurrently, cAMP levels decreased (RPO -8.3+/-6.9% vs. control 19.9+/-7.7%, P<0.05). Our data suggest that dietary RPO-supplementation improved reperfusion AO through mechanisms that may include activation of the NO-cGMP and inhibition of the cAMP pathway.

  • 4. Dietary red palm oil supplementation protects against the consequences of global ischemia in the isolated perfused rat heart.

    Esterhuyse, A. J. et al. (2005). Dietary red palm oil supplementation protects against the consequences of global ischemia in the isolated perfused rat heart. Asia Pacific Journal Clinical Nutrition. 14(4):340-7.

    Activation of the NO-cGMP pathway is associated with myocardial protection against ischemia. During ischemia, function of this pathway is disturbed. Little is known about the effects of supplements such as Red Palm Oil (RPO) on the myocardial NO- cGMP- signalling pathway. RPO consists of saturated (SFAs), mono-unsaturated (MUFAs) and polyunsaturated (PUFAs) fatty acids and is an antioxidant rich in natural B-carotene and vitamin E (tocopherols and tocotrienols). This study determined whether dietary RPO-supplementation protects against the consequences of ischemia and identified a possible mechanism for this protection. Long-Evans rats were fed a control diet or control diet plus 7 g RPO per kg diet for six weeks. Hearts were excised and mounted on a working heart perfusion apparatus. Cardiac function was measured before and after hearts were subjected to 25 minutes of global ischemia. Left ventricular systolic (LVSP) and diastolic pressure (LVDP), coronary flow (CF), heart rate (HR) and aortic output (AO) were measured. To assess NO-cGMP pathway activity, hearts subjected to the same conditions, were freeze-clamped and analysed for tissue cAMP and cGMP levels using a RIA method. Furthermore, composition of myocardial phospholipid fatty acids by gas chromatography and blood samples were collected for serum lipid determinations. The percentage aortic output recovery of hearts supplemented with RPO was 72.9 +/-3.43% vs 55.4 +/-2.48% for controls (P< 0.05). Ten minutes into ischemia the cGMP levels of the RPO-supplementation group were significantly higher than the control group (26.5+/-2.78 pmol/g vs 10.1+/-1.78 pmol/g. Total myocardial PUFA content in hearts supplemented with RPO increased from 54.45+/-1.11% before ischemia to 59.03 +/- 0.30% after ischemia P<0.05). Results demonstrated that RPO-supplementation protected hearts against the consequences of ischemia/reperfusion injury. These findings suggest that dietary RPO protects via the NO-cGMP pathway and/or changes in PUFA composition during ischemia/reperfusion.